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AbsIract-The unilateral contact between two plates according to Kirchhoffs theory is solved by
using a boundary integral equation method. A diaetization leading to a matrix formulation is
proposed. To solve this problem an elimination of boundary unknowns is performed. An iterative
method proves successful with the example treated.

l. INTRODUCTION

For bodies in contact the contact surface is a very important unknown. With regards to
the plate contact, Weitsman[l], Pu and Hussain [2] or Gladwell and Iyer [3] have presented
methods limited to axisymmetric problems. In these cases, solutions can be obtained in
terms of Fredholm integral or in terms of functional to be minimized. In recent years,
Kartvelishvili [4] used a variational method in which the potential energy system is the
minimized functional. The direct minimization is performed by the finite difference
method.

In this paper we develop an original boundary integral equation method in which we
eliminate the boundary unknowns to solve the contact problem between two plates. As
the existence and the unicity of the solution have been proved by D. Fortune [5, 6], we can
establish an iterative procedure on the boundary contact domain. The examples solved
prove that our original method is very efficient for this class of problems.

2. GOVERNING EQUATIONS

Consider two thin plates (Fig. 1):
-The first one (domain SI' boundary f l ) has his mid-surface in the plane z = O. The

normal deflection at a point PleSI of coordinates XI> YI and ZI = 0 in the basis (0, x, y,
z) is denoted by WI'

-The second one (domain Sz, boundary fz) has his mid-surface in the plane Z = - 6.
The normal deflection at a point P2eS2 of coordinates X2' Y2 and Z2 = - 6 in the same basis
(0, x, y, z) is denoted by Wz.

Consequently, according to Kirchhoffs theory of thin plate flexure, the transverse
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Fig. l. Plates position.

tLaboratoire de Mbnique des Solides.
tLaboratoire de Mbnique Theorique.
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deflections WI and W2 are governed by the two differential equations:

(1)

(2)

where Ll is the Laplacian (a 2/ax 2 + a2/ay2), D\ and D 2 are the flexural rigidities of plates
(I) and (2), PI and P2 are the loads per unit area on the plates (I) and (2), respectively.

Boundary conditions are associated with each differential equation. They bear upon two
of the following quantities: the deflection Wit its normal derivative (owl/on), the normal
bending moment M,,(w1) and the equivalent transverse shear force K,,(w\) (respectively W2,

(owJiJn), M,,(W2) and K,,(W2» where n is the outward unit normal on the boundary.
Suppose that the plate No. I is "above" the plate No.2. The assumption of contact

domain Se' leads to relative contact loads, P, acting upon the plate No. I and - P, upon
the plate No.2.

Therefore, if Se is the contact domain, we have to solve the two simultaneous
differential equations:

so that:

P, > 0 and WI - W2 = - () in the contact domain Se

P, = 0 and WI - W2 > - () out of Se'

(3)

(4)

(5)

(6)

Each of these equations is associated with two suitable Kirchhoff boundary conditions.
In this work we limit our study to the slightly simpler problem of two similar plates.
In this case we have:

(7)

If boundary conditions on f l and f 2 are absolutely identical, we can limit our study to
the following problem.

with

PI - P2 + 2P,. S - S - S
LlLlw = D 10 = I = 2

P, > 0 and w = -!J in Se

P, = 0 and w > -!J out of Se'

(8)

(9)

(10)

(11)

Note that this new problem is similar to the contact problem between a plate and a rigid
ground initially distant from tJ.
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3. BOUNDARY ELEMENT METHOD

The formulation of static flexure plate problems by boundary integral equations is now
possible. One [7, 8J of the most convenient approaches consists in taking the Rayleigh
Green identity as the reciprocal theorem, and it leads to the two following integral
equations:

pw(P) =~ Is v(P, Q) p(Q) dSQ - ~t[K,,(v(P, Q»w(Q) - M,,(v(P, Q»

oW ov
x an (Q) + an (P, Q)M,,(w(Q» - v(P, Q)K,,(w(Q))] dsQ (12)

1 N
- D r [w(Ai)M",(v(P, AJ) - M",(w(Ai»v(P, A;)]AI

i-1

with

and

with

p= 1ifPeS

p=~ifPer
2

law lrav
'2 on

p
(P) = DJ. on

p
(P, Q)p(Q) dSQ

1 r [OK" aM" ( ( oW(Q)- D Jr an, (v(P, Q» w(Q) - on
p

v P, Q» an

fj2v ov ]
+-fja (P,Q)M,,(w(Q»--;-(P,Q)K.r(w(Q» dsQn, n un,

1 ~ [ aM", ov]- D t.. w(Ai)-~- (v(P, Ai» - M",(w(AJ) a (P, Ai) AI
i-I un, np

Per

(13)

(14)

(15)

where Q is a point on the boundary r; dSQ (or dsQ) denotes the integration element on
S (or r) with respect to the co-ordinates of Q; n is the outward unit normal at the point
Q of the boundary r; n, is the outward unit normal at the point P of the boundary r;
K,,(u) is the Kirchhoff transverse shear force associated with the deflection field u; M,,(u)
is the normal flexure moment associated with the deflection field u; MIIAU) is the torsion
moment associated with the deflection field u; v(P, Q) is the fundamental solution of
JJv = 0, whose second and third derivatives exhibit a singularity at P, such that
v(P, Q) = (1I811")r2 log r where r = II PQ II ; (-lA, is the jump of the function which may
occur at N comers Ai of curvilinear abscissa si, defined by I·IA, = (·)s i + . - (·)s i - ; p(Q)
is tbe transverse load at the point Q of tbe domain S; and N is tbe number of comers
of tbe plate edge.

Along the boundary, the known quantities are: K,,(w) and M,,(w) on a free edge; wand
M,,(w) on a simply supported edge; wand ow/on on a clamped edge.

Furthermore, the quantity M",(w) at a point Q can be expressed in terms of ow/an:

o [ow ]M",(w(Q» =- D(1- v) os on (Q) • (16)
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4. MATRIX FORMULATION FOR PLATE WITH
CONDITIONS INSIDE THE DOMAIN

Using the approach proposed for static problems in[9l, a matrix formulation ofcontact
problem can be performed:

-by a discretization of the boundary into q straight elements at the middle (nodal
points) of which we define the value of deflection w, its normal derivative (ow /on), bending
moment Mn(w) and transverse shear Kn(w).

-by a discretization of the domain in k rectangular panels at the middle (nodal points)
of which we define the value of the deflection and the transverse load (PI - P2 + 2P,) (Fig.
2).

When M.,(w) is expressed in terms of (ow/on), the two equations (12) together with
(14) and (15) can be discretized in the following way:

I {ow}2{w} =[Arl{Kn}+ [Brl{M.} + [Crl an + [Drl{w} + [Erl{F}

H~:} = [ArJ{K.} + [BrJ{Mn}+ [CrJ{~:} + [DrJ{w} + [ErJ{F}

(17)

(18)

where [Arl, [Br], [Crl, [Drl and [Arl, [Ba [CH, [DH are q by q matrix whose coefficients
result from the curvilinear integrals of (12) and (15), respectively; [Ed and [Erl are q by
k matrix whose coefficients arise from the surface integrals of (12) and (I5), respectively;
{w}, {ow/an}, {M.} and {Kn} are the column vectors of quantities defined on the q nodal
points of r; and {F} is the column vector whose k components are the transverse load
per unit area at the k nodal points inside the domain S.

In the case of homogeneous boundary conditions, eqns (17) and (18) can be condensed
in the following way:

[Grl{I} + [Jrl{F} = {a} (19)

p! 0,<5

! . . ·
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Fig. 2. Boundary and domain discretization.
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where [GrJ is a2q by 2q matrix deduced from [Ar], [Bd, [Cd, [Dd, [Ar], [B;..], [C;..] and [D;..];
[Jr] is a 2q by k matrix deduced from [Er]and [E~]; {I} is the vector whose 2q components
are the 2q boundary unknowns (among w, (ow/an), Mn and Kn).

In the same way, eqn (12) together with (13) written for each nodal point P inside the
domain S gives:

{ws} =[Gs]{I} + [Js]{F} (20)

where [G,] is a k by 2q rectangular matrix; [Js] is a k by k matrix; and {w,} is the vector
whose k components are the k values taken by the deflection at the k nodal points inside
the domain S.

A very convenient method [10], as we prove latter, consists in eliminating the unknown
vector {I} in (20) by inverting eqn (19) in the form:

{I} = - [Gj'] [JrHF}

where [O'i.l] is the inverse matrix of [GrJ.
By substituting (21) into (20) we obtain:

{ws} = (- [G,][Gil][Jr]+ [JJ){F}.

(21)

(22)

(23)

In the contact problem the unknowns are: w, for a point P out of Se' in this case the
corresponding component of {F} is (PI - Pi); F for a point P in Se. in this case the
corresponding component of {w,} is -~.

Consequently for a given domain Sc, (12) is a linear system of k unknowns, which can
be recast in the form:

{:j= ( - [GJ[Gr I][JrJ + [J,]) {;~}

~here {FI } is the known part of {F} (so that P, =0) and {F2} is the unknown part; {w,.}
IS the unknown part of {w,} and {w,J the known part so that (w,= - ~).

This problem would be classical if the contact zone Sc were defined, but it is also an
unknown.

Then. the effective problem becomes: what is the contact zone S;!

5. DETERMINATION OF CONTACT ZONE
In way to find the contact zone we use an iterative procedure as follows:

First step
We suppose that there is no contact between the two plates. In this case we compute

the deflection w in all the nodal points inside the domain for which the condition (11) is
satisfied, consequently the given load F, is (PI - P2) inside S. The eqn (23) becomes:

{w,.} =(- [G,][G i Il[Jrl + [JJ){FI}. (24)

Second step
From last step, we consider whether the condition w > - {) is satisfied everywhere. If,

for some points this condition is not satisfied, one plate has penetrated the other. For these
nodes, we shall prescribe the contact condition w = - 6, indeed {w'a} = {- 6} and the
reaction P, therefore the load vector {F2} wiJl be unknown. The computation of {w,} and
{F2} allows us to approach the following step. I

Third step
If, among the nodes where we have prescribed w = - {) we have computed a negative

reaction load (P, < O} which is inconsistent with the contact condition, we shall prescribe
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on AB and DA

P, = 0 for these points and for the others we keep the condition w = -lJ. We make a new
computation with this assumption.

Fourth step
We repeat this procedure (steps two and three) until the contact zone no longer

changes. When the problem set by relations (8)-(11) is completely solved, Sc and P, are
known. Consequently it is easy to compute WI and W2 for plates (1) and (2), by solving
(3), (4) and (23).

6. NUMERICAL RESULTS

We studied the problem of two identical square plates simply supported along the
boundary, consequently:

w =0

The Poisson ratio is taken to be 0.3 and we give all the results for dimensionless variables
xla and yla. In these conditions the loads per unit area are (Fig. 3):

-for the plate (1): PI = 1
-for the plate (2): P2 = 0,

for a given distance between the two plates

Owing to symmetry we only study a quarter plate (Fig. 3); the half side is divided into
12 segments where the four quantities w, (owIan), M. and K. are supposed to be constant.
The interior domain is divided into 64 (8 x 8) square panels with the deflection assumed
to be constant over each panel.

Boundary conditions are

w=o and M.(w)=O on BCandCD

and, by symmetry

aw
an =0 and K.( w) = 0

On Figs. 4 and 5 we have plotted the deflection along a symmetry axis and along a diagonal,

D:,------:--------,~_.
I
i
i
I
I I

_.~_._- --Ai - --- - B-

I
I
!
i

PI = I

~P2·1)

Fig. 3. Simply-supported plates.



A new direct boundary integral equation fonnulation 745

.11I1l11l1~
J K

I

-EE·---

A ~
t::-----------------------------:;~O'12S .4fl

BtI,
I
I

I
I

I
O.ir

I

I,
I
I

I
I

O'lL-_---­
I

I
I

Fig. 4. Deflections w along A.B after 19 iterations.
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Fig. S. Deflections w along A.C after 19 iterations.

respectively, of the plates. We also displayed the contact zone on Fig. 6. These values are
obtained in 19 iterations after which we found stability in the numerical results.

As comparison element we noted that the maximal deflection computed, namely
w = 3,91 (Pla 4/D) differs by less than 4% from the maximal deflection calculated from the
exact solution [11].

7. CONCLUSION

In the paper the modified boundary integral method is presented and illustrated by
solving the contact problem between two rectangular plates. The classical method [7] by
boundary integral equations, needs to solve simultaneously:
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Fig. 6. Contact domain after 19 iterations.

• 96 equations for the boundary
.64 equations for the domain

for an iterative calculus.
Consequently for solving this problem, the classical method leads to 19 systems of 160

equations.
Our method leads to 19 systems of 64 equations. The gain of computational time is

very importatnt. However, this method has the usual disadvantages related to matrix
inversions. In order to keep the numerical work within reasonable extend, the number of
boundary elements has to be suitably restricted.
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